Abstract
Mixed-halide lead perovskites (MHLPs) are semiconductor materials with bandgaps that are tunable across the visible spectrum and have seen promising applications in photovoltaics and optoelectronics. However, their segregation into phases with enriched halide components, under resonant light illumination and/or electric field, have hindered their practical applications. Herein, we demonstrate the stabilization of the MHLP photoluminescence (PL) peak as a function of their excitation intensities. This effect is associated with the phase segregation of MHLPs and their subsequent remixing by photothermal heating. We conclude that the balance between these opposing processes dictates the equilibrium PL peak of the MHLPs. The findings in this work could serve as a potential approach to obtain MHLP with stable emission peaks under operating conditions.